SciMaiQ

Call Now! :+254 726 126 859 |  +254 739 289 008  

Topic 1: Physical Quantities & Units

CIE 9702 (2025–2027) – Learner Success Notes: Physical Quantities & Units + Uncertainties

CIE 9702 Physics (2025–2027) — Learner Success Notes

Topic: Physical Quantities & Units • Measurement Techniques & Uncertainties (with exhaustive worked examples)
Use these notes directly for revision and exam practice.

Syllabus coverage (you will be tested on):

  • SI base quantities & units; derived units; homogeneity (dimensional analysis).
  • Scalars vs vectors (definitions and common examples).
  • Prefixes, orders of magnitude, unit conversions.
  • Measurement techniques: rules for analogue & digital instruments; zero error.
  • Uncertainties: absolute, fractional, percentage; combining in $+,-,\times,\div,$ powers.
  • Significant figures & rounding, quoting results correctly.
  • Graph skills: best-fit/worst-fit, gradient & intercept with uncertainties.
  • Choosing methods: repeated readings (mean & half-range), single reading (resolution).

Rapid reference

  • Absolute $\Delta x$
  • Fractional $\dfrac{\Delta x}{x}$
  • Percentage $\dfrac{\Delta x}{x}\!\times\!100\%$
  • Analogue $\Delta x=\tfrac{1}{2}$ of smallest division
  • Digital $\Delta x=\text{last digit step (resolution)}$
  • Add/Sub add absolute uncertainties
  • Mul/Div add percentage uncertainties
  • Powers if $y=x^n$, then $\dfrac{\Delta y}{y}=|n|\dfrac{\Delta x}{x}$

1) Physical quantities, SI base units & dimensions

Base quantities: length $L$ (m), mass $M$ (kg), time $T$ (s), electric current $I$ (A), temperature $\Theta$ (K), amount $n$ (mol), luminous intensity $I_v$ (cd).

Derived examples: speed m s$^{-1}$, force N (kg m s$^{-2}$), pressure Pa (kg m$^{-1}$ s$^{-2}$), energy J (kg m$^{2}$ s$^{-2}$), power W (kg m$^{2}$ s$^{-3}$).

Dimensional analysis: check homogeneity.

Force $F=ma \Rightarrow [F]=M L T^{-2}$.

Energy $E=Fd \Rightarrow [E]=M L^{2} T^{-2}$.

Pressure $p=F/A \Rightarrow [p]=M L^{-1} T^{-2}$.

Power $P=E/t \Rightarrow [P]=M L^{2} T^{-3}$.

Common prefixes

PrefixSymbolFactorExample
microµ$10^{-6}$µm
millim$10^{-3}$mA
centic$10^{-2}$cm
kilok$10^{3}$kg
megaM$10^{6}$MW
gigaG$10^{9}$GB
teraT$10^{12}$TB

2) Measurement rules you must remember

Analogue instrument (ruler, thermometer, analogue meter): quote $\Delta x=\tfrac{1}{2}$ of the smallest division. Example: a ruler with 1 mm divisions ⇒ $\Delta x=\pm0.5$ mm.
Digital instrument (digital voltmeter/balance): quote $\Delta x=\pm$ one step of the display resolution. Example: $2.34$ V ⇒ $\Delta V=\pm0.01$ V.
Zero error: If the instrument does not read zero when it should, correct the reading first, then use the corrected value for uncertainty calculations.

3) Uncertainties — definitions & how to combine

Absolute uncertainty $\Delta x$ — the ± spread in the same units as $x$.

Fractional uncertainty $\dfrac{\Delta x}{x}$.

Percentage uncertainty $\dfrac{\Delta x}{x}\times 100\%$.

Combining rules:

  • Add/Subtract: $y=a\pm b \Rightarrow \Delta y=\Delta a+\Delta b$ (absolute add).
  • Multiply/Divide: $y=ab$ or $y=a/b \Rightarrow \dfrac{\Delta y}{y}=\dfrac{\Delta a}{a}+\dfrac{\Delta b}{b}$ (percentage add).
  • Powers: $y=a^{n} \Rightarrow \dfrac{\Delta y}{y}=|n|\dfrac{\Delta a}{a}$.
  • General products: $y=k a^{p} b^{q} c^{r}\Rightarrow \dfrac{\Delta y}{y}=|p|\dfrac{\Delta a}{a}+|q|\dfrac{\Delta b}{b}+|r|\dfrac{\Delta c}{c}$.
When a formula is complicated (e.g., parallel resistors): Use an extreme values approach — compute the result with all inputs at their upper bounds and at their lower bounds; the uncertainty is half the difference.

4) Exhaustive worked examples (uncertainties)

Ex.1 — Reading an analogue ruler

A ruler has 1 mm divisions. A length is read as $72.3$ mm.

Resolution rule: $\Delta l=\pm0.5$ mm (half smallest division).

Quote: $l=(72.3\;\pm\;0.5)$ mm. Percentage uncertainty $=\dfrac{0.5}{72.3}\times100\%\approx0.69\%$.

Ex.2 — Reading a digital voltmeter

A DVM shows $2.34$ V with a step of $0.01$ V.

Resolution rule: $\Delta V=\pm0.01$ V.

Quote: $V=(2.34\;\pm\;0.01)$ V. Percentage uncertainty $\approx0.43\%$.

Ex.3 — Repeated stopwatch readings (mean & half-range)

Times (s): 1.22, 1.25, 1.24, 1.23, 1.26.
  1. Mean $\bar t=1.240$ s.
  2. Half-range $=\tfrac{1.26-1.22}{2}=0.020$ s.

Quote: $t=(1.240\;\pm\;0.020)$ s. Percentage uncertainty $=\dfrac{0.020}{1.240}\times100\%\approx1.61\%$.

Ex.4 — Area from a measured diameter

A wire diameter $D=(1.20\;\pm\;0.01)$ mm. Cross-sectional area $A=\dfrac{\pi D^{2}}{4}$.

Percentage uncertainty in $A$ is $2\times\dfrac{0.01}{1.20}\times100\%=1.67\%$.

Numerical value: $A=\pi(1.20/2)^2=1.131\;\text{mm}^2=1.131\times10^{-6}\;\text{m}^2$.

Absolute uncertainty: $\Delta A=(1.67\%\;\text{of}\;A)=1.89\times10^{-2}\;\text{mm}^2$.

Ex.5 — $g$ from a pendulum: $g=\dfrac{4\pi^2 L}{T^2}$

$L=(1.000\;\pm\;0.001)$ m, $T=(2.006\;\pm\;0.005)$ s.

Best value: $g=\dfrac{4\pi^2(1.000)}{(2.006)^2}=9.8107\;\text{m s}^{-2}$.

Percentage uncertainty: $\dfrac{\Delta g}{g}=\dfrac{\Delta L}{L}+2\dfrac{\Delta T}{T}=0.10\%+2\times0.249\%\approx0.599\%$.

Absolute: $\Delta g=(0.599\%\;\text{of}\;9.8107)=0.0587\;\text{m s}^{-2}$.

Quote: $g=(9.8107\;\pm\;0.0587)\;\text{m s}^{-2}$ $\approx$ $9.811\;\pm\;0.059\;\text{m s}^{-2}$ (3 s.f.).

Ex.6 — Resistivity $\rho=\dfrac{RA}{L}$ using $R$, $D$ and $L$

$R=(12.5\;\pm\;0.1)\;\Omega$, $D=(1.20\;\pm\;0.01)$ mm, $L=(1.000\;\pm\;0.001)$ m.

$A=\pi(D/2)^2=1.131\times10^{-6}\;\text{m}^2$ (from Ex.4). $\,\;\dfrac{\Delta A}{A}=2\dfrac{\Delta D}{D}=1.667\%$.

Best value: $\rho=\dfrac{12.5\times1.131\times10^{-6}}{1.000}=1.414\times10^{-5}\;\Omega\,\text{m}$.

Percentage uncertainty: $\dfrac{\Delta\rho}{\rho}=\dfrac{\Delta R}{R}+\dfrac{\Delta A}{A}+\dfrac{\Delta L}{L}=0.8\%+1.667\%+0.1\%\approx2.567\%$.

Absolute: $\Delta\rho\approx2.57\%\times1.414\times10^{-5}=3.63\times10^{-7}\;\Omega\,\text{m}$.

Quote: $\rho=(1.414\;\pm\;0.036)\times10^{-5}\;\Omega\,\text{m}$.

Ex.7 — Electrical power $P=IV$

$I=(0.450\;\pm\;0.005)$ A, $V=(6.00\;\pm\;0.01)$ V.

$P=2.700$ W. Percentage uncertainty $=\dfrac{0.005}{0.450}+\dfrac{0.01}{6.00}=1.278\%$.

Absolute $\Delta P=1.278\%\times2.700=0.0345$ W.

Quote: $(2.70\;\pm\;0.03)$ W (2–3 s.f. is appropriate).

Ex.8 — Density $\rho=\dfrac{m}{lwh}$ from mixed instruments

Digital mass $m=(124.56\;\pm\;0.01)$ g. Analogue dimensions: $l=(5.00\;\pm\;0.05)$ cm, $w=(2.00\;\pm\;0.05)$ cm, $h=(1.50\;\pm\;0.05)$ cm.

$V=lwh=15.0$ cm$^{3}$; $\rho=8.304\;\text{g cm}^{-3}$.

Percentage $\rho$-uncertainty: $\dfrac{\Delta m}{m}+\dfrac{\Delta l}{l}+\dfrac{\Delta w}{w}+\dfrac{\Delta h}{h}=0.008\%+1.0\%+2.5\%+3.33\%\approx6.84\%$.

Absolute: $\Delta\rho=6.84\%\times8.304\approx0.568\;\text{g cm}^{-3}$.

Quote: $\rho=(8.30\;\pm\;0.57)\;\text{g cm}^{-3}$.

Ex.9 — Series vs parallel resistors

Series: $R_1=(100.0\;\pm\;0.5)\,\Omega$, $R_2=(220.0\;\pm\;0.5)\,\Omega$.

$R_{\text{S}}=320.0\,\Omega$, $\Delta R_{\text{S}}=0.5+0.5=1.0\,\Omega$ ⇒ $(320.0\;\pm\;1.0)\,\Omega$.

Parallel: $R=\left(\dfrac{1}{R_1}+\dfrac{1}{R_2}\right)^{-1}$. Use extreme values.

  • $R_{\text{nom}}=68.75\,\Omega$
  • $R_{\max}$ (both high): $69.035\,\Omega$; $R_{\min}$ (both low): $68.465\,\Omega$

$\Delta R=\tfrac{R_{\max}-R_{\min}}{2}=0.285\,\Omega$ ⇒ $R=(68.75\;\pm\;0.29)\,\Omega$ (about $0.42\%$).

Ex.10 — Gradient from a graph with uncertainty

Suppose a $T^{2}$ vs $L$ graph gives best-fit slope $m=4.05\;\text{s}^2\,\text{m}^{-1}$; worst acceptable slopes $m_{\min}=3.90$, $m_{\max}=4.20$.

Gradient $m=(4.05\;\pm\;0.15)$; percentage $=0.15/4.05\times100\%\approx3.70\%$.

For a pendulum, $g=\dfrac{4\pi^2}{m}$ so $\dfrac{\Delta g}{g}=\dfrac{\Delta m}{m}=3.70\%$ ⇒ $g=(9.748\;\pm\;0.361)$ m s$^{-2}$.

Ex.11 — Addition/Subtraction example

A distance is the sum of three segments: $(1.200\;\pm\;0.005)$ m, $(0.750\;\pm\;0.002)$ m, $(0.305\;\pm\;0.001)$ m.

Total $=2.255$ m; $\Delta=0.005+0.002+0.001=0.008$ m ⇒ $(2.255\;\pm\;0.008)$ m.

Ex.12 — Power-law (pencil rule)

If $y=kx^{n}$ (e.g., $I\propto V^{n}$), then $\dfrac{\Delta y}{y}=|n|\dfrac{\Delta x}{x}$. So, doubling the exponent doubles the percentage uncertainty carried from $x$ to $y$.

Example: $A\propto D^{2}$ ⇒ a $0.8\%$ diameter uncertainty gives a $1.6\%$ area uncertainty.

5) Graph skills & reporting answers

Best-fit vs worst-fit lines
  • Draw a thin best-fit line through the scatter (balanced points above/below).
  • Draw two extreme acceptable lines within all error bars to estimate gradient range.
  • $\Delta m=\tfrac{m_{\max}-m_{\min}}{2}$; quote $m\pm\Delta m$.
Quoting results
  • Match significant figures to your uncertainty (usually 1–2 s.f. in the uncertainty).
  • Write value and uncertainty with the same decimal places.
  • Always state units after the uncertainty: e.g., $(2.70\;\pm\;0.03)$ W.
10‑second check: If your percentage uncertainty is >10–20% in a practical, improve method (longer length, more repeats, larger signals).

6) Common instruments & typical uncertainties

InstrumentResolutionTypical $\Delta$ ruleNotes
Ruler (mm)1 mm$\pm0.5$ mmUse set square to avoid parallax.
Vernier caliper0.1 mm$\pm0.05$ mmCheck zero error each time.
Micrometer0.01 mm$\pm0.005$ mmUse ratchet; measure in several orientations.
Stopwatch0.01 s$\pm0.01$–$\pm0.02$ sHuman reaction ≈ $\pm0.1$ s dominates single readings; time many oscillations.
Digital voltmeter0.01 V (example)$\pm$ one stepChoose range to give 2–3 s.f.

7) Exam traps & how to avoid them

  • For products/divisions, do not add absolute uncertainties — add percentages.
  • Quote units with the final answer and with the uncertainty.
  • Round the uncertainty first (1–2 s.f.), then round the value to the same decimal places.
  • Graph ranges: error bars must reflect measurement uncertainties (not the scatter).
  • Zero error: correct readings before calculations.

8) Practice set (exam-style)

  1. Analogue vs digital: A thermometer with 1 °C divisions reads 23.6 °C. Quote with uncertainty. A digital thermometer reads 23.6 °C with 0.1 °C steps. Quote with uncertainty.
  2. Percentage uncertainty: $V=(6.00\;\pm\;0.02)$ V. What is the percentage uncertainty?
  3. Sum of lengths: $(12.0\;\pm\;0.1)$ cm + $(8.50\;\pm\;0.05)$ cm. Quote result.
  4. Area of a rectangle: $l=(1.200\;\pm\;0.005)$ m, $w=(0.305\;\pm\;0.001)$ m. Find $A$ and its uncertainty.
  5. Wire area from diameter: $D=(0.80\;\pm\;0.01)$ mm. Find $A$ and percentage uncertainty.
  6. Power: $I=(0.320\;\pm\;0.003)$ A, $V=(12.0\;\pm\;0.1)$ V. Find $P$ with $\Delta P$.
  7. Period from 50 oscillations: Time for 50 swings $= (84.6\;\pm\;0.2)$ s. Find $T$ and its percentage uncertainty.
  8. Density: $m=(245.2\;\pm\;0.1)$ g; $l=(8.0\;\pm\;0.1)$ cm, $w=(3.0\;\pm\;0.1)$ cm, $h=(1.5\;\pm\;0.1)$ cm. Quote $\rho$ with uncertainty.
  9. Parallel resistors (extremes): $R_1=(150.0\;\pm\;0.5)\,\Omega$, $R_2=(330.0\;\pm\;0.5)\,\Omega$. Find $R_{\parallel}\pm\Delta R$.
  10. Graph gradient: Best-fit $m=2.60$, worst $m_{\min}=2.45$, $m_{\max}=2.76$. Quote $m$ and percentage uncertainty.
  11. Pendulum $g$ via gradient: Using Q10’s gradient for $T^2$ vs $L$ (slope $=4\pi^2/g$), determine $g\pm\Delta g$.
Show fully worked answers
  1. Analogue: $23.6\,^{\circ}\text{C}\;\pm0.5\,^{\circ}\text{C}$. Digital: $23.6\,^{\circ}\text{C}\;\pm0.1\,^{\circ}\text{C}$.
  2. $\dfrac{0.02}{6.00}\times100\%=0.33\%$.
  3. $20.50$ cm; $\Delta=0.1+0.05=0.15$ cm ⇒ $(20.50\;\pm\;0.15)$ cm.
  4. $A=0.3660$ m$^2$. Percent: $\dfrac{0.005}{1.200}+\dfrac{0.001}{0.305}=0.417\%+0.328\%=0.745\%$. $\Delta A=0.00273$ m$^{2}$ ⇒ $(0.3660\;\pm\;0.0027)$ m$^2$.
  5. $A=\pi(0.80/2)^2=0.503\,\text{mm}^2$. Percent $=2\times\dfrac{0.01}{0.80}=2.5\%$.
  6. $P=3.84$ W. Percent $=\dfrac{0.003}{0.320}+\dfrac{0.1}{12.0}=0.94\%+0.83\%=1.77\%$. $\Delta P=0.068$ W ⇒ $(3.84\;\pm\;0.07)$ W.
  7. $T=84.6/50=1.692$ s. $\Delta T/T=\Delta(\text{time})/\text{time}=0.2/84.6=0.236\%$. So $T=(1.692\;\pm\;0.004)$ s.
  8. $V=36.0$ cm$^3$. $\rho=6.811$ g cm$^{-3}$. Percent $=\dfrac{0.1}{245.2}+\dfrac{0.1}{8.0}+\dfrac{0.1}{3.0}+\dfrac{0.1}{1.5}=0.041\%+1.25\%+3.33\%+6.67\%\approx11.29\%$. $\Delta\rho\approx0.769$ g cm$^{-3}$.
  9. $R_{\text{nom}}=\big(1/150+1/330\big)^{-1}=103.1\,\Omega$. $R_{\max}$ with both high: $103.7\,\Omega$; $R_{\min}$ both low: $102.6\,\Omega$. $\Delta=0.55\,\Omega$ ⇒ $(103.1\;\pm\;0.6)\,\Omega$.
  10. $m=(2.60\;\pm\;0.155)$; percentage $=5.96\%$.
  11. $g=\dfrac{4\pi^2}{m}=\dfrac{39.478}{2.60}=15.18$; percentage same $=5.96\%$ ⇒ $\Delta g=0.905$ ⇒ $(15.2\;\pm\;0.9)$ m s$^{-2}$ (illustrative).

9) Quick self-checks

  • Have I used the correct combining rule (absolute vs percentage)?
  • Did I correct for zero error before computing?
  • Are value and uncertainty rounded to consistent decimal places?
  • Is the unit shown with the final quoted result?
  • On graphs, did I use error bars and worst-fit lines to estimate $\Delta m$?
Prepared for CIE 9702 Physics (2025–2027). By Abel Masitsa.

Add Your Heading Text Here

Scroll to Top